Sirindhorn International Institute of Technology
 Thammasat University at Rangsit

School of Information, Computer and Communication Technology

ECS 203: Problem Set 14

Semester/Year: 2/2014
Course Title: Basic Electrical Engineering
Instructor: Asst. Prof. Dr. Prapun Suksompong (prapun@siit.tu.ac.th)
Course Web Site: http://www2.siit.tu.ac.th/prapun/ecs203/

Due date: None

Questions

1. [Alexander and Sadiku, 2009, Q7.10] Consider the circuit in Figure 1.
(a) Find $v_{0}(t)$ for $t>0$.
(b) Determine the time necessary for the capacitor voltage to decay to one-third of its value at $\mathrm{t}=0$.

Figure 1
2. [Alexander and Sadiku, 2009, Q7.2] Determine the time constant for the circuit in Figure 2.

Figure 2
3. [Alexander and Sadiku, 2009, Q7.7] Assuming that the switch in Figure 3 has been in position A for a long time and is moved to position B at $t=0$, find $\mathrm{v}_{\mathrm{o}}(t)$ for $\mathrm{t} \geq 0$.

Figure 3
4. [F2010] Consider the circuit in Figure 4 below. Assume the switch has been at position 1 for a long time and moves to position 2 at $\mathrm{t}=0 \mathrm{sec}$.

Figure 4

Let

$$
\mathrm{V}_{\mathrm{s} 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{s} 2}=0 \mathrm{~V}, \mathrm{R}_{1}=6 \Omega, \mathrm{R}_{2}=3 \Omega \text {, and } \mathrm{C}=10 \mathrm{~F} .
$$

(a) (3 pt) Find $v\left(0^{-}\right)$. Do not forget to justify your answer.
(b) (1 pt) Find $v(0)$. Do not forget to justify your answer.
(c) (4 pt) Find $v(t)$ for $t>0$.
5. [F2010] Consider the circuit in Figure 5 below. Assume the switch has been at position 1 for a long time and moves to position 2 at $\mathbf{t}=\mathbf{5} \mathbf{~ s e c}$.

Figure 5

Let

$$
\mathrm{V}_{\mathrm{s} 1}=16 \mathrm{~V}, \mathrm{~V}_{s 2}=8 \mathrm{~V}, \mathrm{R}_{1}=3 \Omega, \mathrm{R}_{2}=5 \Omega \text {, and } \mathrm{C}=8 \mathrm{~F}
$$

(a) (3 pt) Find $v(0)$.
(b) (2 pt) Find $v(5)$.
(c) $(4 \mathrm{pt})$ Find $v(t)$.
(d) (1 pt) Evaluate $v(t)$ at $t=7$.
6. [Alexander and Sadiku, 2009, Q7.40] Find the capacitor voltage for $\boldsymbol{t} \boldsymbol{\mathbf { 0 }}$ and $\boldsymbol{t} \boldsymbol{>} \mathbf{0}$ for each of the circuits in Figure 6.

Figure 6
7. [Alexander and Sadiku, 2009, Q7.42]
(a) If the switch in Figure 7 has been open for a long time and is closed at $t=0$, find $v_{o}(t)$.
(b) Suppose, instead, that the switch has been closed for a long time and is opened at t $=0$. (Note that this is not shown in the figure.) Find $v_{o}(t)$.

Figure 7
8. [Alexander and Sadiku, 2009, Q7.44] The switch in Figure 8 has been in position a for a long time. At $t=0$, it moves to position b. Calculate $i(t)$ for all $t>0$.

Figure 8
9. Consider the circuit in Figure 9 below. Let

Figure 9

Assume that the switch has been in position 1 during time $t<0$. Then, during time $t \geq 0$ the switch changes its position five times: at $\mathrm{t}_{1}=0 \mathrm{~ms}, \mathrm{t}_{2}=25 \mathrm{~ms}, \mathrm{t}_{3}=50 \mathrm{~ms}, \mathrm{t}_{4}=75 \mathrm{~ms}, \mathrm{t}_{5}=100$ ms .
(At time t_{1}, the switch changes to position 2. At time t_{2}, the switch changes back to position 1 . At time t_{3}, the switch changes again to position $2 \ldots$...)

Plot the voltage $v(\mathrm{t})$ for time $t>0$.
Hint: You should have $v\left(\mathrm{t}_{5}\right) \approx 4.59 \mathrm{~V}$.

