

Sirindhorn International Institute of Technology

Thammasat University at Rangsit

School of Information, Computer and Communication Technology

ECS 203: Problem Set 14

Semester/Year:2/2014Course Title:Basic Electrical EngineeringInstructor:Asst. Prof. Dr. Prapun Suksompong (prapun@siit.tu.ac.th)Course Web Site:http://www2.siit.tu.ac.th/prapun/ecs203/

Due date: None

Questions

- 1. [Alexander and Sadiku, 2009, Q7.10] Consider the circuit in Figure 1.
 - (a) Find $v_0(t)$ for t > 0.
 - (b) Determine the time necessary for the capacitor voltage to decay to one-third of its value at t = 0.

Figure 1

2. [Alexander and Sadiku, 2009, Q7.2] Determine the time constant for the circuit in Figure 2.

Figure 2

3. [Alexander and Sadiku, 2009, Q7.7] Assuming that the switch in Figure 3 has been in position A for a long time and is moved to position B at t = 0, find $v_o(t)$ for $t \ge 0$.

4. [F2010] Consider the circuit in Figure 4 below. **Assume** the switch has been <u>at position 1 for</u> <u>a long time</u> and moves to position 2 at t = 0 sec.

Figure 4

Let

 V_{s1} = 5 V, V_{s2} = 0 V, R_1 = 6 Ω , R_2 = 3 Ω , and C = 10 F.

- (a) (3 pt) Find $v(0^{-})$. Do not forget to justify your answer.
- (b) (1 pt) Find v(0). Do not forget to justify your answer.
- (c) (4 pt) Find v(t) for t > 0.

5. [F2010] Consider the circuit in Figure 5 below. Assume the switch has been at position 1 for a long time and moves to position 2 **at t = 5 sec.**

Figure 5

Let

$$V_{s1}$$
 = 16 V, V_{s2} = 8 V, R_1 = 3 Ω , R_2 = 5 Ω , and C = 8 F.

- (a) (3 pt) Find v(0).
- (b) (2 pt) Find v(5).
- (c) (4 pt) Find v(t).
- (d) (1 pt) Evaluate v(t) at t = 7.

 [Alexander and Sadiku, 2009, Q7.40] Find the capacitor voltage for t < 0 and t > 0 for each of the circuits in Figure 6.

- 7. [Alexander and Sadiku, 2009, Q7.42]
 - (a) If the switch in Figure 7 has been open for a long time and is closed at t = 0, find $v_o(t)$.
 - (b) Suppose, instead, that the switch has been closed for a long time and is opened at t = 0. (Note that this is not shown in the figure.) Find $v_o(t)$.

Figure 7

8. [Alexander and Sadiku, 2009, Q7.44] The switch in Figure 8 has been in position a for a long time. At t = 0, it moves to position b. Calculate i(t) for all t > 0.

Figure 8

9. Consider the circuit in Figure 9 below. Let

$$V_s$$
 = 10 V, R_1 = 30 k Ω , R_2 = 10 k Ω , and C = 4 $\mu F.$

Assume that the switch has been in position 1 during time t < 0. Then, during time t \ge 0 the switch changes its position five times: at t₁ = 0 ms, t₂ = 25 ms, t₃ = 50 ms, t₄ = 75 ms, t₅ = 100 ms.

(At time t_1 , the switch changes to position 2. At time t_2 , the switch changes back to position 1. At time t_3 , the switch changes again to position 2....)

<u>**Plot**</u> the voltage v(t) for time t > 0.

Hint: You should have $v(t_5) \approx 4.59$ V.